Source code for rsatoolbox.util.inference_util

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Inference module utilities
"""
from __future__ import annotations
from collections.abc import Iterable
from typing import TYPE_CHECKING, Optional
import warnings
import numpy as np
from scipy import stats
from scipy.stats import rankdata, wilcoxon
from scipy.stats import t as tdist
from rsatoolbox.model import Model
from rsatoolbox.rdm import RDMs
from .matrix import pairwise_contrast
from .rdm_utils import batch_to_matrices
if TYPE_CHECKING:
    from numpy.typing import NDArray


[docs]def input_check_model(models, theta=None, fitter=None, N=1): """ Checks whether model related inputs to evaluations are valid and generates an evaluation-matrix of fitting size. Args: model : [list of] rsatoolbox.rdm.RDMs the models to be evaluated theta : numpy.ndarray or list , optional Parameter(s) for the model(s). The default is None. fitter : [list of] function, optional fitting function to overwrite the model default. The default is None, i.e. keep default N : int, optional number of samples/rows in evaluations matrix. The default is 1. Returns: evaluations : numpy.ndarray empty evaluations-matrix theta : list the processed and checked model parameters fitter : [list of] functions checked and processed fitter functions """ if isinstance(models, Model): models = [models] elif not isinstance(models, Iterable): raise ValueError('model should be an rsatoolbox.model.Model or a list of' + ' such objects') if N > 1: evaluations = np.zeros((N, len(models))) else: evaluations = np.zeros(len(models)) if theta is not None: assert isinstance(theta, Iterable), 'If a list of models is' \ + ' passed theta must be a list of parameters' assert len(models) == len(theta), 'there should equally many' \ + ' models as parameters' else: theta = [None] * len(models) if fitter is None: fitter = [None] * len(models) elif isinstance(fitter, Iterable): assert len(fitter) == len(models), 'if fitters are passed ' \ + 'there should be as many as models' else: fitter = [fitter] * len(models) for k, model in enumerate(models): if fitter[k] is None: fitter[k] = model.default_fitter return models, evaluations, theta, fitter
[docs]def pool_rdm(rdms, method: str = 'cosine'): """pools multiple RDMs into the one with maximal performance under a given evaluation metric rdm_descriptors of the generated rdms are empty Args: rdms (rsatoolbox.rdm.RDMs): RDMs to be pooled method : String, optional Which comparison method to optimize for. The default is 'cosine'. Returns: rsatoolbox.rdm.RDMs: the pooled RDM, i.e. a RDM with maximal performance under the chosen method """ rdm_vec = rdms.get_vectors() if method == 'euclid': rdm_vec = _nan_mean(rdm_vec) elif method == 'neg_riem_dist': rdm_vec = _nan_mean(rdm_vec) elif method == 'cosine': rdm_vec = rdm_vec / np.sqrt(np.nanmean(rdm_vec ** 2, axis=1, keepdims=True)) rdm_vec = _nan_mean(rdm_vec) elif method == 'corr': rdm_vec = rdm_vec - np.nanmean(rdm_vec, axis=1, keepdims=True) rdm_vec = rdm_vec / np.nanstd(rdm_vec, axis=1, keepdims=True) rdm_vec = _nan_mean(rdm_vec) rdm_vec = rdm_vec - np.nanmin(rdm_vec) elif method == 'cosine_cov': rdm_vec = rdm_vec / np.sqrt(np.nanmean(rdm_vec ** 2, axis=1, keepdims=True)) rdm_vec = _nan_mean(rdm_vec) elif method == 'corr_cov': rdm_vec = rdm_vec - np.nanmean(rdm_vec, axis=1, keepdims=True) rdm_vec = rdm_vec / np.nanstd(rdm_vec, axis=1, keepdims=True) rdm_vec = _nan_mean(rdm_vec) rdm_vec = rdm_vec - np.nanmin(rdm_vec) elif method in ('spearman', 'rho-a'): rdm_vec = np.array([_nan_rank_data(v) for v in rdm_vec]) rdm_vec = _nan_mean(rdm_vec) elif method == 'rho-a': rdm_vec = np.array([_nan_rank_data(v) for v in rdm_vec]) rdm_vec = _nan_mean(rdm_vec) elif method in ('kendall', 'tau-b'): warnings.warn('Noise ceiling for tau based on averaged ranks!') rdm_vec = np.array([_nan_rank_data(v) for v in rdm_vec]) rdm_vec = _nan_mean(rdm_vec) elif method == 'tau-a': warnings.warn('Noise ceiling for tau based on averaged ranks!') rdm_vec = np.array([_nan_rank_data(v) for v in rdm_vec]) rdm_vec = _nan_mean(rdm_vec) else: raise ValueError('Unknown RDM comparison method requested!') return RDMs(rdm_vec, dissimilarity_measure=rdms.dissimilarity_measure, descriptors=rdms.descriptors, rdm_descriptors=None, pattern_descriptors=rdms.pattern_descriptors)
def _nan_mean(rdm_vector: NDArray) -> NDArray: """ takes the average over a rdm_vector with nans for masked entries without a warning Args: rdm_vector(numpy.ndarray): set of rdm_vectors to be averaged Returns: rdm_mean(numpy.ndarray): the mean rdm """ nan_idx = ~np.isnan(rdm_vector[0]) mean_values = np.mean(rdm_vector[:, nan_idx], axis=0) rdm_mean = np.empty((1, rdm_vector.shape[1])) rdm_mean.fill(np.nan) rdm_mean[:, nan_idx] = mean_values return rdm_mean def _nan_rank_data(rdm_vector: NDArray) -> NDArray: """ rank_data for vectors with nan entries Args: rdm_vector(numpy.ndarray): the vector to be rank_transformed Returns: ranks(numpy.ndarray): the ranks with nans where the original vector had nans """ ranks_no_nan = rankdata(rdm_vector[~np.isnan(rdm_vector)]) ranks = np.ones_like(rdm_vector) * np.nan ranks[~np.isnan(rdm_vector)] = ranks_no_nan return ranks
[docs]def all_tests( evaluations: NDArray, noise_ceil: NDArray, test_type: str = 't-test', model_var: Optional[NDArray] = None, diff_var: Optional[NDArray] = None, noise_ceil_var: Optional[NDArray] = None, dof: int = 1): """wrapper running all tests necessary for the model plot -> pairwise tests, tests against 0 and against noise ceiling Args: evaluations (numpy.ndarray): model evaluations to be compared (should be 3D: bootstrap x models x subjects or repeats) noise_ceil (numpy.ndarray): noise_ceiling estimate(s) to compare against test_type(String): 't-test' : t-test bases tests using variances 'bootstrap' : Direct bootstrap sample based tests 'ranksum' : Wilcoxon signed rank-sum tests model_var, diff_var, noise_ceil_var: variance estimates from the results object. These correspond to the variances of the individual model evals, pairs of model evals and differences from the noise ceiling. Returns: numpy.ndarrays: p_pairwise, p_zero, p_noise """ if test_type == 't-test': p_pairwise = t_tests(evaluations, diff_var, dof=dof) p_zero = t_test_0(evaluations, model_var, dof=dof) p_noise = t_test_nc(evaluations, noise_ceil_var[:, 0], np.nanmean(noise_ceil[0]), dof) elif test_type == 'bootstrap': if len(noise_ceil.shape) > 1: noise_lower_bs = noise_ceil[0] noise_lower_bs.shape = (noise_ceil.shape[0], 1) else: noise_lower_bs = noise_ceil[0].reshape(1, 1) p_pairwise = bootstrap_pair_tests(evaluations) p_zero = ((evaluations <= 0).sum(axis=0) + 1) / evaluations.shape[0] diffs = noise_lower_bs - evaluations p_noise = ((diffs <= 0).sum(axis=0) + 1) / evaluations.shape[0] elif test_type == 'ranksum': noise_c = np.nanmean(noise_ceil[0]) p_pairwise = ranksum_pair_test(evaluations) p_zero = ranksum_value_test(evaluations, 0) p_noise = ranksum_value_test(evaluations, noise_c) else: raise ValueError('test_type not recognized.\n' + 'Options are: t-test, bootstrap, ranksum') return p_pairwise, p_zero, p_noise
[docs]def pair_tests( evaluations: NDArray, test_type: str = 't-test', diff_var: Optional[NDArray] = None, dof: int = 1): """wrapper running pair tests Args: evaluations (numpy.ndarray): model evaluations to be compared (should be 3D: bootstrap x models x subjects or repeats) test_type(Strinng): 't-test' : t-test bases tests using variances 'bootstrap' : Direct bootstrap sample based tests 'ranksum' : Wilcoxon signed rank-sum tests Returns: numpy.ndarray: p_pairwise """ if test_type == 't-test': p_pairwise = t_tests(evaluations, diff_var, dof=dof) elif test_type == 'bootstrap': p_pairwise = bootstrap_pair_tests(evaluations) elif test_type == 'ranksum': p_pairwise = ranksum_pair_test(evaluations) else: raise ValueError('test_type not recognized.\n' + 'Options are: t-test, bootstrap, ranksum') return p_pairwise
[docs]def zero_tests(evaluations, test_type='t-test', model_var=None, dof=1): """wrapper running tests against 0 Args: evaluations (numpy.ndarray): model evaluations to be compared (should be 3D: bootstrap x models x subjects or repeats) test_type(Strinng): 't-test' : t-test bases tests using variances 'bootstrap' : Direct bootstrap sample based tests 'ranksum' : Wilcoxon signed rank-sum tests Returns: numpy.ndarray: p_zero """ if test_type == 't-test': p_zero = t_test_0(evaluations, model_var, dof=dof) elif test_type == 'bootstrap': p_zero = ((evaluations <= 0).sum(axis=0) + 1) / evaluations.shape[0] elif test_type == 'ranksum': p_zero = ranksum_value_test(evaluations, 0) else: raise ValueError('test_type not recognized.\n' + 'Options are: t-test, bootstrap, ranksum') return p_zero
[docs]def nc_tests(evaluations, noise_ceil, test_type='t-test', noise_ceil_var=None, dof=1): """wrapper running tests against noise ceiling Args: evaluations (numpy.ndarray): model evaluations to be compared (should be 3D: bootstrap x models x subjects or repeats) noise_ceil (numpy.ndarray): noise_ceiling estimate(s) to compare against test_type(Strinng): 't-test' : t-test bases tests using variances 'bootstrap' : Direct bootstrap sample based tests 'ranksum' : Wilcoxon signed rank-sum tests noise_ceil_var: variance estimate from the results object. These correspond to the variances of the differences from the noise ceiling. Returns: numpy.ndarrays: p_noise """ if test_type == 't-test': p_noise = t_test_nc(evaluations, noise_ceil_var[:, 0], np.nanmean(noise_ceil[0]), dof) elif test_type == 'bootstrap': if len(noise_ceil.shape) > 1: noise_lower_bs = noise_ceil[0] noise_lower_bs.shape = (noise_ceil.shape[0], 1) else: noise_lower_bs = noise_ceil[0].reshape(1, 1) diffs = noise_lower_bs - evaluations p_noise = ((diffs <= 0).sum(axis=0) + 1) / evaluations.shape[0] elif test_type == 'ranksum': noise_c = np.nanmean(noise_ceil[0]) p_noise = ranksum_value_test(evaluations, noise_c) else: raise ValueError('test_type not recognized.\n' + 'Options are: t-test, bootstrap, ranksum') return p_noise
[docs]def ranksum_pair_test(evaluations): """pairwise tests between models using the wilcoxon signed rank test Args: evaluations (numpy.ndarray): model evaluations to be compared (should be 3D: bootstrap x models x subjects or repeats) Returns: numpy.ndarray: matrix of proportions of opposit conclusions, i.e. p-values for the test """ # check that the dimensionality is correct assert evaluations.ndim == 3, \ 'provided evaluations array has wrong dimensionality' n_model = evaluations.shape[1] # ignore bootstraps evaluations = np.nanmean(evaluations, 0) pvalues = np.empty((n_model, n_model)) for i_model in range(n_model - 1): for j_model in range(i_model + 1, n_model): pvalues[i_model, j_model] = wilcoxon( evaluations[i_model], evaluations[j_model]).pvalue pvalues[j_model, i_model] = pvalues[i_model, j_model] np.fill_diagonal(pvalues, 1) return pvalues
[docs]def ranksum_value_test(evaluations, comp_value=0): """nonparametric wilcoxon signed rank test against a fixed value Args: evaluations (numpy.ndarray): model evaluations to be compared (should be 3D: bootstrap x models x subjects or repeats) comp_value(float): value to compare against Returns: float: p-value """ # check that the dimensionality is correct assert evaluations.ndim == 3, \ 'provided evaluations array has wrong dimensionality' n_model = evaluations.shape[1] # ignore bootstraps evaluations = np.nanmean(evaluations, 0) pvalues = np.empty(n_model) for i_model in range(n_model): pvalues[i_model] = wilcoxon( evaluations[i_model] - comp_value).pvalue return pvalues
[docs]def bootstrap_pair_tests(evaluations): """pairwise bootstrapping significance tests for a difference in model performance. Tests add 1/len(evaluations) to each p-value and are computed as two sided tests, i.e. as 2 * the smaller proportion Args: evaluations (numpy.ndarray): model evaluations to be compared Returns: numpy.ndarray: matrix of proportions of opposit conclusions, i.e. p-values for the bootstrap test """ proportions = np.zeros((evaluations.shape[1], evaluations.shape[1])) while len(evaluations.shape) > 2: evaluations = np.nanmean(evaluations, axis=-1) for i_model in range(evaluations.shape[1] - 1): for j_model in range(i_model + 1, evaluations.shape[1]): proportions[i_model, j_model] = np.sum( evaluations[:, i_model] < evaluations[:, j_model]) \ / (evaluations.shape[0] - np.sum(evaluations[:, i_model] == evaluations[:, j_model])) proportions[j_model, i_model] = proportions[i_model, j_model] proportions = np.minimum(proportions, 1 - proportions) * 2 proportions = (len(evaluations) - 1) / len(evaluations) * proportions \ + 1 / len(evaluations) np.fill_diagonal(proportions, 1) return proportions
[docs]def t_tests(evaluations, variances, dof=1): """pairwise t_test based significant tests for a difference in model performance Args: evaluations (numpy.ndarray): model evaluations to be tested, typically from a results object variances (numpy.ndarray): vector of the variances of model evaluation differences dof (integer): degrees of freedom used for the test (default=1) Returns: numpy.ndarray: matrix of p-values for the test """ if variances is None: raise ValueError('No variance estimates provided for t_test!') n_model = evaluations.shape[1] evaluations = np.nanmean(evaluations, 0) while evaluations.ndim > 1: evaluations = np.nanmean(evaluations, axis=-1) C = pairwise_contrast(np.arange(n_model)) diffs = C @ evaluations t = diffs / np.sqrt(np.maximum(variances, np.finfo(float).eps)) t = batch_to_matrices(np.array([t]))[0][0] p = 2 * (1 - stats.t.cdf(np.abs(t), dof)) return p
[docs]def t_test_0(evaluations, variances, dof=1): """ t-tests against 0 performance. Args: evaluations (numpy.ndarray): model evaluations to be tested, typically from a results object variances (numpy.ndarray): vector of model evaluation variances dof (integer): degrees of freedom used for the test (default=1) Returns: numpy.ndarray: p-values for the raw t-test of each model against 0. """ if variances is None: raise ValueError('No variance estimates provided for t_test!') evaluations = np.nanmean(evaluations, 0) while evaluations.ndim > 1: evaluations = np.nanmean(evaluations, axis=-1) t = evaluations / np.sqrt(np.maximum(variances, np.finfo(float).eps)) p = 1 - stats.t.cdf(t, dof) return p
[docs]def t_test_nc(evaluations, variances, noise_ceil, dof=1): """ t-tests against noise_ceiling. Technically this can be used to test evaluations against any fixed number. Args: evaluations (numpy.ndarray): model evaluations to be tested, typically from a results object variances (numpy.ndarray): variance estimates for the comparisons to the noise ceiling noise_ceil (float): the average noise ceiling to test against. noise_ceil_var (numpy.ndarray): variance or covariance of the noise ceiling dof (integer): degrees of freedom used for the test (default=1) Returns: numpy.ndarray: p-values for the raw t-test of each model against the noise ceiling. """ if variances is None: raise ValueError('No variance estimates provided for t_test!') evaluations = np.nanmean(evaluations, 0) while evaluations.ndim > 1: evaluations = np.nanmean(evaluations, axis=-1) p = np.empty(len(evaluations)) for i, eval_i in enumerate(evaluations): t = (eval_i - noise_ceil) / np.sqrt( np.maximum(variances[i], np.finfo(float).eps)) p[i] = 2 * (1 - stats.t.cdf(np.abs(t), dof)) return p
[docs]def extract_variances( variance, nc_included: bool = True, n_rdm: Optional[int] = None, n_pattern: Optional[int] = None): """ extracts the variances for the individual model evaluations, differences between model evaluations and for the comparison to the noise ceiling for 1D arrays we assume a diagonal covariance is meant for 2D arrays this is taken as the covariance of the model evals for 3D arrays we assume this is the result of a dual bootstrap and perform the correction. Then there should be three covariances given from double, rdm & pattern bootstrap in that order. nc_included=True jields the result if the last two columns correspond to the noise ceiling results nc_included=False assumes that the noise ceiling is fixed instead. To get the more accurate estimates that take into account the number of subjects and/or the numbers of stimuli can be passed as n_rdm and n_pattern respectively. This function corrects for all ns that are passed. If you bootstrapped only one factor only pass the N for that factor! """ if variance.ndim == 0: variance = np.array([variance]) if variance.ndim == 1: # model evaluations assumed independent if nc_included: C = pairwise_contrast(np.arange(variance.shape[0] - 2)) model_variances = variance[:-2] nc_variances = np.expand_dims(model_variances, -1) \ + np.expand_dims(variance[-2:], 0) diff_variances = np.diag(C @ np.diag(variance[:-2]) @ C.T) else: C = pairwise_contrast(np.arange(variance.shape[0])) model_variances = variance nc_variances = np.array([variance, variance]).T diff_variances = np.diag(C @ np.diag(variance) @ C.T) model_variances = _correct_1d(model_variances, n_pattern, n_rdm) nc_variances = _correct_1d(nc_variances, n_pattern, n_rdm) diff_variances = _correct_1d(diff_variances, n_pattern, n_rdm) elif variance.ndim == 2: # a single covariance matrix if nc_included: C = pairwise_contrast(np.arange(variance.shape[0] - 2)) model_variances = np.diag(variance)[:-2] nc_variances = np.expand_dims(model_variances, -1) \ - 2 * variance[:-2, -2:] \ + np.expand_dims(np.diag(variance[-2:, -2:]), 0) diff_variances = np.diag(C @ variance[:-2, :-2] @ C.T) else: C = pairwise_contrast(np.arange(variance.shape[0])) model_variances = np.diag(variance) nc_variances = np.array([model_variances, model_variances]).T diff_variances = np.diag(C @ variance @ C.T) model_variances = _correct_1d(model_variances, n_pattern, n_rdm) nc_variances = _correct_1d(nc_variances, n_pattern, n_rdm) diff_variances = _correct_1d(diff_variances, n_pattern, n_rdm) elif variance.ndim == 3: # general transform for multiple covariance matrices if nc_included: C = pairwise_contrast(np.arange(variance.shape[1] - 2)) model_variances = np.einsum('ijj->ij', variance)[:, :-2] nc_variances = np.expand_dims(model_variances, -1) \ - 2 * variance[:, :-2, -2:] \ + np.expand_dims(np.einsum('ijj->ij', variance[:, -2:, -2:]), 1) # np.diag(C@variances@C.T) diff_variances = np.einsum( 'ij,kjl,il->ki', C, variance[:, :-2, :-2], C) else: C = pairwise_contrast(np.arange(variance.shape[1])) model_variances = np.einsum('ijj->ij', variance) nc_variances = np.array([model_variances, model_variances] ).transpose(1, 2, 0) diff_variances = np.einsum('ij,kjl,il->ki', C, variance, C) # dual bootstrap variance estimate from 3 covariance matrices model_variances = _dual_bootstrap(model_variances, n_rdm, n_pattern) nc_variances = _dual_bootstrap(nc_variances, n_rdm, n_pattern) diff_variances = _dual_bootstrap(diff_variances, n_rdm, n_pattern) return model_variances, diff_variances, nc_variances
def _correct_1d( variance: NDArray, n_pattern: Optional[int] = None, n_rdm: Optional[int] = None): if (n_pattern is not None) and (n_rdm is not None): # uncorrected dual bootstrap? n = min(n_rdm, n_pattern) elif n_pattern is not None: n = n_pattern elif n_rdm is not None: n = n_rdm else: n = None if n is not None: variance = (n / (n - 1)) * variance return variance
[docs]def get_errorbars(model_var, evaluations, dof, error_bars='sem', test_type='t-test'): """ computes errorbars for the model-evaluations from a results object Args: results : rsatoolbox.inference.Results the results object eb_type : str, optional which errorbars to compute Returns: limits (np.array) """ if model_var is None: return np.full((2, evaluations.shape[1]), np.nan) if error_bars.lower() == 'sem': errorbar_low = np.sqrt(np.maximum(model_var, 0)) errorbar_high = np.sqrt(np.maximum(model_var, 0)) elif error_bars[0:2].lower() == 'ci': if len(error_bars) == 2: CI_percent = 95.0 else: CI_percent = float(error_bars[2:]) prop_cut = (1 - CI_percent / 100) / 2 if test_type == 'bootstrap': n_models = evaluations.shape[1] framed_evals = np.concatenate( (np.tile(np.array((-np.inf, np.inf)).reshape(2, 1), (1, n_models)), evaluations), axis=0) perf = np.nanmean(evaluations, 0) while perf.ndim > 1: perf = np.nanmean(perf, -1) errorbar_low = -(np.quantile(framed_evals, prop_cut, axis=0) - perf) errorbar_high = (np.quantile(framed_evals, 1 - prop_cut, axis=0) - perf) else: std_eval = np.sqrt(np.maximum(model_var, 0)) errorbar_low = std_eval \ * tdist.ppf(prop_cut, dof) errorbar_high = std_eval \ * tdist.ppf(prop_cut, dof) else: raise ValueError('computing errorbars: Argument ' + 'error_bars is incorrectly defined as ' + str(error_bars) + '.') limits = np.stack((errorbar_low, errorbar_high)) if np.isnan(limits).any() or (abs(limits) == np.inf).any(): raise ValueError( 'computing errorbars: Too few bootstrap samples for the ' + 'requested confidence interval: ' + error_bars + '.') return limits
def _dual_bootstrap(variances, n_rdm=None, n_pattern=None): """ helper function to perform the dual bootstrap Takes a 3x... array of variances and computes the corrections assuming: variances[0] are the variances in the double bootstrap variances[1] are the variances in the rdm bootstrap variances[2] are the variances in the pattern bootstrap If both n_rdm and n_pattern are given this uses the more accurate small sample formula. """ if n_rdm is None or n_pattern is None: variance = 2 * (variances[1] + variances[2]) \ - variances[0] variance = np.maximum(np.maximum( variance, variances[1]), variances[2]) variance = np.minimum( variance, variances[0]) else: variance = ( (n_rdm / (n_rdm - 1)) * variances[1] + (n_pattern / (n_pattern - 1)) * variances[2] - ((n_pattern * n_rdm / (n_pattern - 1) / (n_rdm - 1)) * (variances[0] - variances[1] - variances[2]))) variance = np.maximum(np.maximum( variance, (n_rdm / (n_rdm - 1)) * variances[1]), (n_pattern / (n_pattern - 1)) * variances[2]) variance = np.minimum( variance, variances[0]) return variance
[docs]def default_k_pattern(n_pattern): """ the default number of pattern divisions for crossvalidation minimum number of patterns is 3*k_pattern. Thus for n_pattern <=9 this returns 2. From there it grows gradually until 5 groups are made for 40 patterns. From this point onwards the number of groups is kept at 5. bootstrapped crossvalidation also uses this function to set k, but scales n_rdm to the expected proportion of samples retained when bootstrapping (1-np.exp(-1)) """ if n_pattern < 12: k_pattern = 2 elif n_pattern < 24: k_pattern = 3 elif n_pattern < 40: k_pattern = 4 else: k_pattern = 5 return k_pattern
[docs]def default_k_rdm(n_rdm): """ the default number of rdm groupsfor crossvalidation minimum number of subjects is k_rdm. We switch to more groups whenever the groups all contain more rdms, e.g. we make 3 groups of 2 instead of 2 groups of 3. We follow this scheme until we reach 5 groups of 4. From there on this function returns 5 groups forever. bootstrapped crossvalidation also uses this function to set k, but scales n_rdm to the expected proportion of samples retained when bootstrapping (1-np.exp(-1)) """ if n_rdm < 6: k_rdm = 2 elif n_rdm < 12: k_rdm = 3 elif n_rdm < 20: k_rdm = 4 else: k_rdm = 5 return k_rdm