Source code for rsatoolbox.util.rdm_utils

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Collection of helper methods for rdm module

@author: baihan
"""
from __future__ import annotations
from typing import Union, List, Dict, Tuple, TYPE_CHECKING
import numpy as np
from scipy.spatial.distance import squareform
if TYPE_CHECKING:
    from numpy.typing import NDArray
    from rsatoolbox.rdm.rdms import RDMs


[docs]def batch_to_vectors(x) -> Tuple[NDArray, int, int]: """converts a *stack* of RDMs in vector or matrix form into vector form Args: x: stack of RDMs Returns: tuple: **v** (np.ndarray): 2D, vector form of the stack of RDMs **n_rdm** (int): number of rdms **n_cond** (int): number of conditions """ if x.ndim == 2: v = x n_rdm = x.shape[0] n_cond = _get_n_from_reduced_vectors(x) elif x.ndim == 3: m = x n_rdm = x.shape[0] n_cond = x.shape[1] v = np.ndarray((n_rdm, int(n_cond * (n_cond - 1) / 2))) for idx in np.arange(n_rdm): v[idx, :] = squareform(m[idx, :, :], checks=False) elif x.ndim == 1: v = np.array([x]) n_rdm = 1 n_cond = _get_n_from_reduced_vectors(v) else: raise ValueError(f'Invalid number of dimensions on rdm stack: [{x.ndim}]') return v, n_rdm, n_cond
[docs]def batch_to_matrices(x): """converts a *stack* of RDMs in vector or matrix form into matrix form Args: **x**: stack of RDMs Returns: tuple: **v** (np.ndarray): 3D, matrix form of the stack of RDMs **n_rdm** (int): number of rdms **n_cond** (int): number of conditions """ if x.ndim == 2: v = x n_rdm = x.shape[0] n_cond = _get_n_from_reduced_vectors(x) m = np.ndarray((n_rdm, n_cond, n_cond)) for idx in np.arange(n_rdm): m[idx, :, :] = squareform(v[idx, :]) elif x.ndim == 3: m = x n_rdm = x.shape[0] n_cond = x.shape[1] return m, n_rdm, n_cond
def _get_n_from_reduced_vectors(x): """ calculates the size of the RDM from the vector representation Args: **x**(np.ndarray): stack of RDM vectors (2D) Returns: int: n: size of the RDM """ return max(int(np.ceil(np.sqrt(x.shape[1] * 2))), 1) def _get_n_from_length(n): """ calculates the size of the RDM from the vector length Args: **x**(np.ndarray): stack of RDM vectors (2D) Returns: int: n: size of the RDM """ return int(np.ceil(np.sqrt(n * 2)))
[docs]def add_pattern_index(rdms: RDMs, pattern_descriptor): """ adds index if pattern_descriptor is None Args: **rdms** (rsatoolbox.rdm.RDMs): rdms object to be parsed Returns: pattern_descriptor pattern_select """ pattern_select = rdms.pattern_descriptors[pattern_descriptor] pattern_select = np.unique(pattern_select) return pattern_descriptor, pattern_select
def _parse_input_rdms(rdm1: RDMs, rdm2: RDMs) -> Tuple[NDArray, NDArray, NDArray]: """Gets the vector representation of input RDMs, raises an error if the two RDMs objects have different dimensions, and remove nans Args: rdm1 (RDMs): first set of RDMs rdm2 (RDMs): second set of RDMs Returns: Tuple[NDArray, NDArray, NDArray]: Tuple of three: 0) vector of dissimilarities for rdm1 without nans 1) vector of dissimilarities for rdm2 without nans 2) boolean mask of non-nan pairs """ vector1 = rdm1.get_vectors() vector2 = rdm2.get_vectors() return _parse_nan_vectors(vector1, vector2) def _parse_nan_vectors(vector1: NDArray, vector2: NDArray) -> Tuple[NDArray, NDArray, NDArray]: """Remove nans from two dissimilarity vectors Args: vector1 (NDArray): first set of dissimilarity vectors vector2 (NDArray): second set of dissimilarity vectors Returns: Tuple[NDArray, NDArray, NDArray]: Tuple of three: 0) vector of dissimilarities for vector1 without nans 1) vector of dissimilarities for vector2 without nans 2) boolean mask of non-nan pairs """ if not vector1.shape[1] == vector2.shape[1]: raise ValueError('rdm1 and rdm2 must be RDMs of equal shape') not_nan_mask = ~np.isnan(vector1) vector1_no_nan = vector1[not_nan_mask].reshape(vector1.shape[0], -1) vector2_no_nan = vector2[~np.isnan(vector2)].reshape(vector2.shape[0], -1) if not vector1_no_nan.shape[1] == vector2_no_nan.shape[1]: raise ValueError('rdm1 and rdm2 have different nan positions') return vector1_no_nan, vector2_no_nan, not_nan_mask def _extract_triu_(X): """ extracts the upper triangular vector as a masked view Args: X (numpy.ndarray): 2D symmetric matrix Returns: vector version of X """ mask = np.triu(np.ones_like(X, dtype=bool), k=1) return X[mask]
[docs]def category_condition_idxs(rdms: RDMs, category_selector: Union[str, List[int]] ) -> Dict[str, List[int]]: """ Args: rdms (rsatoolbox.rdm.RDMs): A reference RDM stack. category_selector (str or List[int]): Either: a string specifying the `rdms.pattern_descriptor` which labels categories for each condition. Or: a list of ints specifying the category label for each condition in `rdms`. Returns: categories (Dict[str, List[int]]): A dictionary mapping the strings in `category_names` to lists of integer indices of categories within the RDMs. @author: caiw """ _msg_arg_category_selector = ( "Argument category_selector must be a string specifying a " "pattern_descriptor or a list of ints indicating RDM conditions." ) # Dictionary maps category names to lists of condition indices categories: Dict[str, List[int]] if isinstance(category_selector, str): categories = { category_name: [ idx for idx, cat in enumerate(rdms.pattern_descriptors[ category_selector]) if cat == category_name ] # Use a set to get unique category labels for category_name in sorted(set(rdms.pattern_descriptors[ category_selector])) } elif (isinstance(category_selector, list) and all(isinstance(i, int) for i in category_selector)): if len(category_selector) != rdms.n_cond: raise ValueError(_msg_arg_category_selector) categories = { f"Category {category_i}": [ idx for idx, cat in enumerate(category_selector) if cat == category_i ] for category_i in category_selector } else: raise ValueError(_msg_arg_category_selector) return categories